Abstract

This research investigated thermal stability of mechanically milled MCrAlY/YSZ composites during heat treatment and high velocity oxy-fuel (HVOF) thermal spray processes. MCrAlY powder was mixed with 5%, 10% and 15% YSZ and then milled for 12 and 24 h. A powder without YSZ reinforcement ball was milled for 12 and 24 h too. The composite powders were annealed for 10 h at 1273 K to investigate thermal stability. Nanocrystalline and commercial powders were deposited on Inconel-617 substrate using the HVOF process. The morphology and thermal stability of mechanically milled and heat treated powders and coatings were investigated using X-ray diffractometry, scanning electron microscopy (SEM) and optical microscopy (OM). It was found that the increase in milling time resulted in the uniform distribution of reinforcements in the γ phase matrix. The uniform distribution of reinforcements caused reduction in grain growth during heat treatment process. On the other hand, increasing YSZ percentage decreased grain growth, but when the YSZ amount exceeded 10%, the ceramic reinforcements could not prevent the grain growth of nanostructure powders. The heat absorbed by nanostructured powders during thermal spraying process resulted in the grain growth of the γ-phase, but due to the presence of YSZ reinforcement, the grain growth was very lower than that of unreinforced coatings. It could be suggested that nanostructure coating formed due to thermo mechanical phenomena occurred in commercial powder particles during thermal spray process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.