Abstract

In this paper, we present the effect of grating structure on Relative Intensity Noise (RIN) in Distributed Feedback (DFB) laser diode. We analyze the noise in three types of grating shape including longitudinally uniform, concave and convex depth. It is shown that the concave grating against uniform and convex structure is suitable for reducing the Spatial Hole Burning (SHB) effect, but is not appropriate for low noise DFB lasers. According to the results of analysis, in uniform grating, RIN decreases when the corrugation depth increases. In concave and convex structure, grating depth is composed of fixed and variable parts. When fixed part of grating depth is constant, increasing variable amplitude of grating reduces RIN and when the variable part of grating is constant, increasing fixed part of grating reduces RIN. In all of the three type structures, RIN for the symmetric grating is lowest. Also with decreasing RIN, relaxation oscillation frequency decreases and when the SHB effect occurs, the rate of this decreasing is low. We conclude a special shape of grating that has low SHB effect and low noise in optical communication systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.