Abstract
There have been many medical applications based on gold nanoparticles (GNPs) over the past several centuries. Recently, researchers have focused on bone tissue engineering applications utilizing GNPs. The effect of various sizes of gold nanoparticles on the differentiation of human adipose-derived stem cells (ADSCs) into osteoblasts was investigated. The concentration of gold nanoparticles was fixed at 1μM and varying sizes of 15, 30, 50, 75 and 100nm (spherical GNPs) were used. The lack of cytotoxicity was confirmed by establishing viability of ADSCs using cell counting kit-8 (CCK-8) and live/dead assays. The results showed that each size of GNPs had no significant toxicity on ADSCs during 1week of incubation. Osteogenic differentiation of ADSCs was confirmed by alkaline phosphatase (ALP) staining, ALP activity, calcium deposition, and real time PCR experiments. It was found, through dark field assays and microscope cell images, that 30nm and 50nm GNPs were preferentially up taken into the ADSCs. As expected, all sizes of gold nanoparticles promoted the differentiation of ADSCs toward osteoblasts more than control. Among all sizes, 30 and 50nm GNPs appeared to have the highest differentiation rates. The data consistently demonstrated that 30 and 50nm GNPs are the most effective in promoting osteogenic differentiation of ADSCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.