Abstract

The atria and ventricles of transgenic mice (TGbeta(2)) with cardiac overexpression of the human beta(2)-adrenoceptor (beta(2)AR) were initially reported to show maximum contractility in the absence of beta-AR stimulation. However, we have previously observed a different phenotype in these mice, with myocytes showing normal contractility but reduced betaAR responses. We have investigated the roles of cyclic AMP and Gi in basal and betaAR function in these myocytes. ICI 118,551 at inverse agonist concentrations decreased contraction by 32%. However, the cyclic AMP antagonist Rp-cAMPS had no effect on contraction in TGbeta(2) myocytes, indicating that there was no tonic influence of raised cyclic AMP. These findings cannot be explained by the proposed model for inverse agonism, where the activated receptor (R*) raises cyclic AMP levels and so increases contraction in the absence of agonist. After pertussis toxin (PTX) pretreatment to produce inactivation of Gi, the basal contraction in 1 mM Ca(2+) was increased in TGbeta(2) mice (7.82+/-0.47%, n=23) compared to LM mice (3.60+/-0.59%, n=11) (P<0.001). The contraction amplitude of myocytes to the maximal concentration of isoprenaline was also increased significantly by PTX in TGbeta(2) mice (9.40+/-1.22%, n=8) and was no longer reduced compared to LM mice (8.93+/-1.50%, n=11). Both beta(1)- and beta(2)AR subtypes were affected both by the original desensitization and by the resensitization with PTX. PTX treatment has therefore restored the original phenotype, with high basal contractility and little further effect of isoprenaline. We suggest that both beta-AR desensitization and lack of increased basal contraction in ventricular myocytes from our colony of TGbeta(2) mice were due to increased activity of PTX-sensitive G-proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.