Abstract

Fluidic McKibben artificial muscles are one of the most popular biomimetic actuators, showing similar static and dynamic performance to skeletal muscles. In particular, their pneumatic version offers high-generated force, high speed and high strain in comparison to other actuators. This paper investigates the development of a small-size, fully enclosed, hydraulic McKibben muscle powered by a low voltage pump. Hydraulic McKibben muscles with an outside diameter of 6mm and a length ranging from 35mm to 80mm were investigated. These muscles are able to generate forces up to 26N, strains up to 23%, power to mass of 30W/kg and tension intensity of 1.78N/mm2 at supply water pressure of 2.5bar. The effects of injected pressure and inner tube stiffness on the actuation strain and force generation were studied and a simple model introduced to quantitatively estimate force and stroke generated for a given input pressure. This unique actuation system is lightweight and can be easily modified to be employed in small robotic systems where large movements in short time are required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.