Abstract
Immunological and endocrine immaturity in foals increases foal morbidity and mortality from bacterial sepsis. Dendritic cells (DC) are critical in activating the adaptive immune response, but foal DC are phenotypically and functionally different than those of adult horses. Age-related variations in availability of some soluble plasma factors, such as hormones, might govern some age-related differences in DC function. Effects of exposure to plasma factors on equine DC phenotype and function have not been described. We hypothesized that exposure to plasma from foals or adult horses would differentially impact monocyte-derived DC (MoDC) phenotype and function. Eight healthy adult horses and 8 healthy foals were divided into pairs of one adult horse and one foal. Blood was collected from each pair for MoDC generation when foals were 1 and 30 days of age. MoDC from horses and foals were then exposed to killed whole-cell bacteria in the presence of their own age-matched plasma, plasma from the opposite-aged animal in the pair, and serum-free medium alone (control). Expression of DC-relevant surface markers (MHC class-II, CD86, and CD14) and endocytosis capability were measured by flow cytometry. Supernatant cytokine concentrations (IL-4, IL-17, IFN-γ, and IL-10) were quantified with a validated bead-based immunoassay. Data were analyzed using linear mixed-effects and Tobit regression models (P < 0.05). The percentage of MoDC expressing surface markers MHC class-II and CD86 was reduced in MoDC derived from 1-day-old foals in comparison to adult horse MoDC when cultured in medium alone or with either source of plasma (P = 0.0001). Foal and adult horse MoDC cultured in either source of plasma expressed more CD86 and less CD14 than cells cultured in serum-free medium alone (P ≤ 0.02). Adult horse and foal MoDC exposed to bacterial antigen in the presence of 1-day-old foal plasma secreted less IL-10 (P ≤ 0.0008) compared to those cultured in adult horse plasma. Endogenous production of IL-17 by MoDC from foals at day 1 of age cultured in adult plasma was increased compared to foal MoDC cultured in serum-free medium (P = 0.004). Phagocytosis of killed, labeled Staphylococcus aureus was reduced when MoDC generated from foals or adult horses were exposed to plasma from foals at day 1 or 30 of age (P ≤ 0.03). Age-related variation in soluble plasma factors appear to regulate equine MoDC function, but specific plasma factors capable of regulating MoDC phenotype or function were not defined in this study.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have