Abstract

ABSTRACTControlling the chain orientation of polyimide is important because it affects the physical and electrical properties of the film. When a polyimide film is thick, the chain orientation has an inhomogeneous distribution along the thickness direction. In this study, poly(amic acids), the precursor of polyimide, with different coating thicknesses are dried, and the distribution of chain orientation in the thickness direction is investigated by measuring the residual solvent content with Raman spectroscopy. The effect of film thickness on the imidization rate is also studied by measuring the depth‐wise degree of imidization at the curing step. With the final cured polyimide film, the depth‐wise chain orientation is quantified by introducing the Fraser distribution function using polarized Raman spectroscopy. The thicker film has a lower degree of in‐plane orientation of polyimide chains, particularly near the substrate. This distribution of polyimide chain orientation in the thickness direction is similar to that of poly(amic acid) after drying. Fast imidization with higher solvent content for thick polyimide retards the formation of a well‐ordered structure with a high degree of in‐plane orientation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 52, 848–857

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.