Abstract

The fire performance of fibre-reinforced polypropylene (PP) was investigated with respect to fibre length and modification of the matrix. Fibre lengths of 3 mm, 12 mm, and continuous fibres were used as reinforcements. E-glass continuous fabrics were melt impregnated with PP and consolidated via compression moulding. E-glass fibre-reinforced PP pellets of 3 and 12 mm were compression moulded. Cone calorimetry tests with incident radiant fluxes of 20, 30 and 35 kW m−2 were used to investigate the fire properties of PP glass fibre composites. Results showed that continuous glass fibre reinforced PP exhibits the best fire performance at 20 kW m−2, while 3-mm fibre has the best performance at 35 kW m−2; 12-mm fibre-reinforced PP exhibitedthe lowest performance in comparison with 3-mm and continuous glass fibre reinforcement. Melic-anhydride (MA)-modified PP was found to increase the heat release rate (HRR) by up to 44% and time to ignition by up to 10% depending on the heat flux applied in comparison with unmodified PP. The glass fibre-reinforced composite made with MA-modified PP has 5–12% lower mean HRR and similar time to ignition in comparison with glass fibre composite made by unmodified PP. This suggests improved fibre adhesion plays a role of the fire performance of glass fibre-reinforced PP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.