Abstract

[Purpose] The purpose of this study was to investigate the effect of regular treadmill exercise on the mRNA expressions of myokines and angiogenesis factors in the skeletal muscle of obese rats. [Methods] Thirty two male Sprague-Dawley rats (4weeks old) were divided into the CO (control) and HF (high fat diet) groups. Obesity was induced in the HF group by consumption of 45% high-fat diet for 15 weeks. These groups were further subdivided into training groups (COT and HFT); the training groups conducted moderate intensity treadmill training for 8 weeks. Soleus muscles were excised and analyzed by real-time quantitative PCR. [Results] mRNA expression of myokines, such as PGC-1α, IL-6, and IL-15, in the COT and HFT groups (which conducted regular exercise), were higher as compared with the CO and HF groups (p < 0.05). Also, the levels in the HF group were significantly lower when compared with CO group (p < 0.05). Expression of angiogenesis mRNA, namely mTOR, VEGF, and FLT1, were significantly lower in the HF group, as compared to the CO group (p < 0.05). In addition, COT group had a higher expression of mTORC1, mTORC2, VEGF and FLT mRNA, than the CO group (p < 0.05); the HFT group also had higher expressions of mTOR, VEGF and FLT1 mRNA than the HF group (p < 0.05). [Conclusion] These results indicate that mRNA expression of myokines was increased through the activity of muscle contraction, and it also promoted the mRNA expression of angiogenesis due to activation of mTOR. Thus, we conclude that not only under normal health conditions, but in obesity and excess nutritional circumstances also, regular exercise seems to act positively on the glycemic control and insulin sensitivity through the angiogenesis signaling pathway. Keywords: Regular exercise, obesity, myokine, angiogenesis, mRNA expression

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.