Abstract

Sleep apnea-hypopnea syndrome and its chronic intermittent hypoxia component may cause multi-system-targeted injury. The latest finding shows that liver is one of the injured organs. The purpose of the study is to observe the dynamic process of the influence that chronic intermittent hypoxia plays on rat liver enzyme, hepatic histology, and ultrastructure based on lipid disorders. A total of 72 male Wistar rats were randomly divided into three groups. The control group was fed with a regular chow diet, the high fat group with a high fat diet, and the high fat plus intermittent hypoxia group with a high fat diet with a 7-h/day intermittent hypoxia treatment. Changes were observed in rat liver enzyme, hepatic histology, and ultrastructure of the three groups on the third, sixth, and ninth weeks, respectively. The liver paraffin sections were detected with myeloperoxidase. The liver function and structure of the control group were found to be normal; the liver enzyme level of the high fat group was significantly higher than that of the control group on the sixth and ninth weeks; and the liver enzyme level of the high fat plus intermittent hypoxia group was significantly higher than that of the control group and the high fat group on the third, sixth, and ninth weeks (all P < 0.01). Observed by a light microscope and a transmission electron microscope, the high fat group and the high fat plus intermittent hypoxia group were all characterized by nonalcoholic fatty liver disease: the high fat group was characterized by simple fatty liver on the third and sixth weeks and by steatohepatitis on the ninth week; the damage of the high fat plus intermittent hypoxia group was significantly more severe than that of the high fat group in all the monitoring points, characterized by steatohepatitis on the sixth week and by obvious liver fibrosis on the ninth week; the myeloperoxidase level of the high fat plus intermittent hypoxia group was significantly higher than that of the control group and the high fat group (all P < 0.01). Under the conditions of high fat and intermittent hypoxia, the injury to the liver function, hepatic histology, and ultrastructure is more severe than that of the high fat group. The injury mainly was characterized by nonalcoholic fatty liver disease and becomes more severe with increased exposure time. Oxidative stress may play an important role in the mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call