Abstract

The effect of various activity regimes on metabolism of pigeon pectoralis was examined by measurement of blood lactate following exercise, total lactate dehydrogenase activity of pectoral muscle, and proportions of specific isoenzymes of pectoral muscle lactate dehydrogenase. Sprint-trained birds had the highest pectoral muscle lactate dehydrogenase activity (1409 IU.g-1 wet tissue), while endurance-trained birds had the highest peak lactate levels (287 mg.dl-1, extra-polated from decay curves) and fastest half-time of the lactate response (4.8 min) following exercise, but the lowest lactate dehydrogenase activity (115 IU.g-1 wet tissue). Immobilization of one wing for 3 weeks following endurance training produced a marked increase in lactate dehydrogenase activity of the immobilized muscle, compared to that in the contralateral pectoralis and endurance-trained muscle. Aerobic forms of the lactate dehydrogenase enzyme (that favor conversion of lactate to pyruvate) predominated in pectoral muscle of endurance-trained birds, while cage-confined birds exhibited primarily the anaerobic isoenzymes. These results demonstrate that conversion of pectoral muscle lactate dehydrogenase isoenzymes, total lactate dehydrogenase activity, and half-time of lactate response after exercise is dependent on activity regime in pigeons. In this respect, pigeon pectoral muscle responds to training and disuse in a manner similar to that of mammalian skeletal muscle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call