Abstract
The endwall flow features are heavily dependent on the incoming boundary layer. It was particularly important to increase understanding the effect of inlet boundary layer thickness on endwall secondary flow under unsteady conditions. In present study, the influences of incoming wakes and various boundary layer thickness on endwall secondary flow were studied in a typical high-lift low-pressure turbine cascade, numerical calculation and experiment measurement of seven-hole probe were adopted at Re = 25,000 (based on the inlet velocity and the axial chord). Upstream wakes were simulated through moving rods upstream of the cascade. Detailed analysis was focused on the mechanisms of periodic wake influencing on the endwall vortex structures under thick endwall boundary layer condition. Influences of two different endwall boundary layer thickness on endwall secondary vortices structures were also comparatively analyzed. Under steady condition without wake, although thick incoming boundary layer reduces the cross-passage pressure gradient near endwall, more low momentum fluid inside thick endwall boundary layer is drawn into secondary vortices, finally resulting in stronger the pressure side leg of the leading edge horseshoe vortex and passage vortex, compared to the results of thin boundary layer condition. Under unsteady condition with thick inlet boundary layer, the “negative jet” effect of incoming wakes delays intersection of pressure side leg and suction side leg of leading edge horseshoe vortex on blade suction surface. The time-averaged strength of passage vortex and counter vortex core decreases by about 32%, and the underturning and overturning of endwall secondary flow is suppressed. The instantaneous results also indicate the endwall secondary vortices are reduced periodically at the position of wakes passing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.