Abstract

A three-dimensional computation was conducted to understand effects of the inlet boundary layer thickness on the internal flow and the loss characteristics in a low-speed axial compressor operating at the design condition (φ = 85%) and near stall condition (φ = 65%). At the design condition, independent of the inlet boundary layer thickness, flows in the axial compressor show similar characteristics such as the pressure distribution, size of hub corner-stall, tip leakage flow trajectory, limiting streamlines on the blade suction surface, etc. But, as the load is increased, for the thick inlet boundary layer at hub and casing, the hub corner stall grows to make a large separation region between the hub and suction surface, and the tip leakage flow is more vortical than that observed in the case with thin inlet boundary layer and has the critical point where the trajectory of the tip leakage flow is suddenly turned to the downstream. For the thin inlet boundary layer, the hub corner stall decays to form the thick boundary layer from hub to midspan on the suction surface owing to the blockage of the tip leakage flow and the tip leakage flow leans to the circumferential direction more than at the design condition. In addition to these, the severe reverse flow, induced by both boundary layers on the blade surface and the tip leakage flow, can be found to act as the blockage of flows near the casing, resulting in a heavy loss. As a result of these differences of the internal flow made by the different inlet boundary layer thickness, the spanwise distribution of the total loss is changed dramatically. At the design condition, total pressure losses for two different boundary layers are almost alike in the core flow region but the larger losses are generated at both hub and tip when the inlet boundary layer is thin. At the near stall condition, however, total loss for thick inlet boundary layer is found to be greater than that for thin inlet boundary layer on most of the span except the region near the hub and casing. In order to analyze effects of inlet boundary layer thickness on total loss in detail, total loss is scrutinized through three major loss categories available in a subsonic axial compressor such as profile loss, tip leakage loss and endwall loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.