Abstract

Inkjet-printed functional nanoparticles are actively used in various engineering applications, including bioelectronic and chemical sensors. To maximize the functionalities of the nanoparticles, the printed nanoparticles must be uniformly assembled within the printed micro patterns. However, controlling the movement of the nanoparticles is challenging as it involves multiple mechanisms that play important roles. In this work, we propose an experimental methodology to independently vary the surface charge polarities of the nanoparticles and the printing substrates. We used this method to study the effect of the electrostatic forces between the nanoparticles and the substrate on the uniform assembly of the inkjet-printed nanoparticles during the drying of the inks. We confirmed that the attractive electrostatic force between the two is crucial in uniformly distributing the nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.