Abstract

The effects of flow rate and temperature on the corrosion behaviour of the Al–2.5 Mg alloy in a 3% NaCl solution and the inhibiting efficiency of (+)-catechin on the corrosion of the same alloy have been examined. Measurements were carried out in a flow-through cell, at different flow rates (v1 = 0.0029 m s−1, v2 = 0.0059 m s−1 and v3 = 0.0118 m s−1) and temperatures (20, 30, 40 °C). Electrochemical parameters for the Al–2.5 Mg alloy were determined by polarisation techniques and electrochemical impedance spectroscopy (EIS). Increased flow rate and temperature cause a stronger corrosion attack on the alloy. The addition of (+)-catechin inhibited corrosion at all temperatures and flow rates. The inhibitor efficiency decreased with increase in flow rate and temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.