Abstract

The thermotropic phase behaviour and structure of a nonbilayer-forming lipid, 1-palmitoyl-2-oleoyl-phosphatidylethanolamine, dispersed in water and in aqueous solutions of up to 50 wt% dimethyl sulphoxide (DMSO) have been characterised using synchrotron X-ray diffraction methods. It was found that the presence of DMSO in the solvent induced an increase in the temperature of lamellar-gel to lamellar-liquid-crystal phase transition and a decrease in the temperature of the lamellar-liquid-crystal to inverted-hexagonal phase transition of the phospholipid. The presence of DMSO also caused a decrease in the X-ray repeat spacings of all the phases studied. Electron density profiles of the phospholipid dispersed in water and 50 wt% DMSO in the bilayer gel state were calculated. The presence of 50 wt% DMSO caused the apparent disappearance of the solvent layer separating phospholipid bilayers in the gel state. The results suggest that DMSO contributes to the bilayer electron density profile and that the amphiphilic solvent molecules partition into the interfacial region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.