Abstract

We discuss the role of the diffusion coefficient $a(x)$ on the existence of a positive solution for the quasilinear elliptic problem involving critical exponent $$ \cases - \text{div}( a(x) |\nabla u|^{p-2} \nabla u) = u^{p^* - 1} + \lambda u^{p-1} & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega,\ \endcases $$ where $\Omega$ is a smooth bounded domain in $\R^n$, $n \geq 2$, $1 < p < n$, $p^* = np/(n-p)$ is the critical exponent from the viewpoint of Sobolev embedding, $\lambda$ is a real parameter and $a\colon \overline{\Omega} \rightarrow \R$ is a positive continuous function. We prove that if the function $a(x)$ has an interior global minimum point $x_0$ of order $\sigma$, then the range of values $\lambda$ for which the problem above has a positive solution relies strongly on $\sigma$. We discover in particular that the picture changes drastically from $\sigma > p$ to $\sigma \leq p$. Some sharp answers are also provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.