Abstract

This paper presents a methodology for determination of the optimal material and processing parameters (i.e., nanoclay content, melt temperature, feeding rate, and screw speed) to maximize simultaneously tensile modulus and tensile strength of injection-molded PA-6/clay nanocomposites through coupling response surface method and genetic algorithm. The tensile tests on PA-6/clay nanocomposites are conducted to obtain tensile modulus and tensile strength values, and then analysis of variance is performed. The predicted models for tensile modulus and tensile strength are created by response surface method, and then the functions are optimized by a genetic algorithm code implemented in MATLAB. Acceptable agreement has been observed between the values of the process parameters predicted by the response surface method and genetic algorithm and those of the process parameters obtained through experimental measurements. This study shows that the response surface method coupled with the GA can be utilized effectively to find the optimum process variables in tensile test of PA-6/NC nanocomposites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.