Abstract

There have been many studies on glass particle contamination from glass ampules during the injection of glass ampules, but only the contamination from direct IV bolus injection has been measured. This research aimed to study the difference in glass particle contamination from ampules with different intravenous administration methods commonly used in clinical practice. Four methods were studied: IV bolus injection directly after immediate aspiration, IV bolus injection directly after 2 min’ delayed aspiration, IV bolus injection directly after aspiration with a filter needle, and side shooting to an infusion set with an in-line filter. 45 ampules per method for a total of 180 ampules were used. The number and length of glass particles were measured using a slide scanner. Aspiration was performed without specifically using a slow aspiration method. The longest glass particle was observed in the immediate aspiration group. The side shooting group showed the lowest maximum number of glass particles per ampule. The side shooting group also showed the smallest number of glass particles, but it was statistically insignificant. Using a filter needle syringe and 2 min’ delayed aspiration, which are frequently recommended to minimize contamination, may not be as effective as commonly believed, unless combined with a slow and low pressure aspiration method. Using a side shooting to an infusion set with an in-line filter may minimize glass particle contamination from ampules even without a slow and low pressure aspiration method, but more evidence from a larger study is needed.

Highlights

  • Medication is an important and basic duty for health care professionals

  • 2 min’ delayed aspiration, IV bolus injection directly after aspiration with a filter needle syringe, and side shooting to an infusion set with an in-line filter

  • The number of glass particles was the smallest in group 4, but it was not statistically significant. This is different from the results of prior studies which suggested that the number of glass particles was reduced significantly with an in-line filter (Shaw and Lyall 1985; Preston and Hegadoren 2004; Heiss-Harris and Verklan 2005; Pinnock 1984; Sabon et al 1989; Oie and Kamiya 2005). This difference may be explained by the result of Carbone-Traber and Shanks study (Carbone-Traber and Shanks 1986), which found that it is important to aspirate fluid into a syringe slowly and by a low pressure injection method when using a filter needle syringe and a side shooting to an infusion set with an in-line filter

Read more

Summary

Introduction

Medication is an important and basic duty for health care professionals It is the responsibility of a nurse to administrate drugs safely and accurately to the patient. Glass particles may be introduced during the manufacturing, opening, and injection of glass ampules (Caudron et al 2011) These particles can cause various harmful side effects when they circulate in the body. Injected glass particles can travel through the blood vessels to arrive at various organs, and cause inflammatory responses. They are known to cause blockages, embolism, tissue necrosis, and sepsis

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call