Abstract

Polyurethane (PU) grafted multi-walled carbon nanotubes (MWNTs) (PU-g-MWNTs) containing different hard segments (hexamethylene diisocyanate, HDI, and methylenediphnyl 4,4′-diisocyanate, MDI) were synthesized to fabricate an electro-conducting nanocomposite. The PU conducting nanocomposites were obtained using a simple blending method. PU-g-MWNTs can improve the interfacial compatibility between the MWNTs and PU matrix. The HDI-based PU nanocomposite showed enhanced dispersibility of the functionalized MWNTs than the MDI-based nanocomposite. The difference in dispersity was related to its electrical conductivity. The critical concentration of the MDI-based nanocomposite was lower than the HDI-based nanocomposite because less dispersed and more aggregated MWNTs partially formed a conducting path at a lower concentration. The critical exponent of the HDI-based nanocomposite revealed that the better dispersed MWNTs exhibited enhanced electrical conductivity, compared to the MDI-based nanocomposite, as the filler concentration was increased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call