Abstract

Low-dimensional organic-inorganic hybrid metal halides (OIMHs) have become an emerging class of light-emitting materials. Two zero-dimensional (0D) lead-free organic (EnrofloH2)4Mn3X12 (X = Cl, Br) has been reported in this work. Upon 338 and 340 nm excitation, (EnrofloH2)4Mn3Cl12·2Cl and (EnrofloH2)4Mn3Br12·2Br exhibit emission peaking at 460, 514 nm and 460, 520 nm respectively. It was noticed that the choice of the halide could profoundly govern the luminescent subjects (ENR or Mn2+) through the altered energy transfer. Different halogens could influence the rigidity of ENR organic cations by changing their stacking patterns and band gaps, thus manipulating their luminescent properties. The bandgap behaviors have been revealed by density functional theory calculations. Based on the results, the emission of both compounds come from organic cations (EnrofloH22+) and 4D-6A1 transition of Mn2+ ions. The spectral interplay of these emission bands is governed by the temperature and the possibility of exchanging mechanisms between two emission centers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call