Abstract

This study determined the effect of prey DHA on larval gilthead sea bream (GSB; Sparus aurata) photoreceptor abundance, rhodopsin expression, and growth performance. It was carried out in a twenty-eight 400 l conical tank system that was stocked with 100 viable GSB eggs/l/tank. This allowed the testing of 4 levels of rotifer DHA; 0.99 (Low; L), 1.9 (Intermediate low; I-L), 3.2 (Intermediate high; I-H) and 12.1(High; H) mg DHA/g DW rotifer, which were fed (10 rotifers/ml) to 3-16 DPH larvae. These rotifer diets continued to be offered to 17-34 DPH fish, although these larvae predominantly fed on 4 DHA enriched Artemia nauplii treatments that were offered at a concentration from 0.1 nauplii/ml to 4 nauplii/ml, depending on larval age. This resulted in 4 DHA rotifer-Artemia ranges: 0.99-0.0 (L), 1.9-2.6 (I-L), 3.2-7.2 (I-H), and 12.1-11.77 (H) mg DHA/g DW. The 4 DHA treatments and ranges were tested in replicates of 7 conical tanks per treatment. Increasing rotifer DHA significantly (P<0.0001) improved TL, in an exponential manner, throughout larval rearing. DW in 34 DPH larvae was markedly (P<0.05) enhanced with dietary DHA inclusion in the rotifers and Artemia. There was a significant (P < 0.005) prey DHA dose dependent range effect on the abundance of photoreceptor cells in the retina of 34 DPH larvae. The gene expression of rhodopsin in GSB larvae was significantly (P<0.05) upregulated with dietary DHA dose range and larval age (P<0.0001). This study established a link between dietary DHA level with photoreceptor abundance and rhodopsin expression, which led to improved vision, prey acquisition, and growth in developing GSB larvae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call