Abstract
Seasonality and contact patterns affect the dynamics of disease outbreaks. Recent studies applied to deterministic and stochastic epidemic models with periodic environments have shown that the average basic reproduction number is not sufficient to predict an outbreak. We extend these studies to a time-nonhomogeneous stochastic vector–host model with demographic variability and periodic fluctuations to better understand the combined effects of variability and periodicity on the risk of a disease outbreak. A multitype branching process approximation is used to calculate the probability of a disease outbreak. The approximation follows from the solution of a system of differential equations which is derived from the backward Kolmogorov differential equations. This approximation shows that the risk of a disease outbreak is also periodic and depends on the particular time at which either an infected vector or an infected host is introduced into the susceptible vector and susceptible host populations. Numerical examples with periodic transmission rates for vector and host illustrate the times at which there is the greatest probability of an outbreak and also demonstrate how these times are related to the peak transmission rates for vector or host.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.