Abstract

The influence of hydrostatic pressures up to 30 MPa on the friction and wear behavior of fiber reinforced polymer composites (FRPCs) was investigated together with seawater absorption, interfacial structure and mechanical properties. The results revealed that after aging in the deep-sea environment, the wear rate of the FRPC increased from 1.53 × 10−6 mm3/N∙m to 3.61 × 10−6 mm3/N∙m, and the mechanical strength decreased reversibly. The damage mechanism was assumed to be dominated by the combined effect of crack propagation in the polymer matrix and interfacial debonding at high seawater pressures, characterized by a decreased resin modulus and increased interfacial thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.