Abstract

Cu-doped Bi2Te3 nanopowders with nominal composition Cu x Bi2Te3 (x = 0, 0.01, 0.025, and 0.05) were synthesized by a gas-induced-reduction method using TeO2, Bi(NO3)3·5H2O and Cu(NO3)2·3H2O as raw materials and then hot-pressed into bulk materials. x-Ray diffraction (XRD) analysis indicates that, when x ≠ 0, pure Cu x Bi2Te3 phase was obtained, and that when x = 0, Bi2Te3 mixed with a small amount of Bi2TeO5 was obtained. Field emission scanning electron microscopy observation reveals that Cu addition significantly reduces the grain sizes of the materials. First-principle calculations show that the order of the free energies of the materials is: Cu-doped Bi2Te3 (substitution of Cu for Bi) < Cu intercalated Bi2Te3 < Bi2Te3. The electrical and thermal conductivities decrease and the Seebeck coefficient increases with Cu addition. The maximum figure of merit, ZT, reaches 0.67 at 500 K for a Cu0.05Bi2Te3 sample.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.