Abstract
AbstractTo investigate the effect of crosslinking by a hydrophilic group on a sulfonated polyimide electrolyte membrane, sulfonated polyimide end‐capped with maleic anhydride was synthesized using 1,4,5,8‐naphthalenetetracarboxylic dianhydride, 4,4′‐diaminobiphenyl, 2,2′‐disulfonic acid, 2‐bis [4‐(4‐aminophenoxy)phenyl] hexafluropropane and maleic anhydride. The sulfonated polyimides end‐capped with maleic anhydride were self‐crosslinked or crosslinked with poly(ethylene glycol) diacrylate. A series of the crosslinked sulfonated polyimides having various ratios of sulfonated polyimide and poly(ethylene glycol) diacrylate were prepared and compared with uncrosslinked and self‐crosslinked sulfonated polyimides. The synthesized sulfonated polyimide films were characterized for FTIR spectrum, thermal stability, ion exchange capacity, water uptake, hydrolytic stability, morphological structure, and proton conductivity. The formation of sulfonated polyimide was confirmed in FTIR spectrum. Thermal stability was good for all the sulfonated polyimides that exhibited a three‐step degradation pattern. Ion exchange capacity was the same for both the uncrosslinked and the self‐crosslinked sulfonated polyimides (1.30 mEq/g). When the crosslinked sulfonated polyimides with poly(ethylene glycol) were compared, the ion exchange capacity was decreased as 1.27 > 1.25 > 1.23 mEq/g and water uptake was increased as 23.8 < 24.0 < 24.3% with the increase in poly(ethylene glycol) diacrylate content. All the crosslinked sulfonated polyimides with poly(ethylene glycol) diacrylate were stable for over 200 h at 80 °C in deionized water. Morphological structure and mean intermolecular distance were obtained by WAXD. Proton conductivities were measured at 30, 50, 70, and 90 °C. The proton conductivity of the crosslinked sulfonated polyimides with poly(ethylene glycol) diacrylate increased with the increase in poly(ethylene glycol) diacrylate content despite the fact that the ion exchange capacity was decreased. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1455–1464, 2005
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have