Abstract

The effect of Cr buffer layer thickness on the open-circuit voltage generated by thin-film thermoelectric modules of Bi0.5Sb1.5Te3 (p-type) and Bi2Te2.7Se0.3 (n-type) materials was investigated. A Cr buffer layer, whose thickness generally needs to be optimized to improve adhesion depending on the substrate surface condition, such as roughness, was deposited between thermoelectric thin films and glass substrates. When the Cr buffer layer was 1 nm thick, the Seebeck coefficients and electrical conductivity of 1 µm thermoelectric thin films with the buffer layers were approximately equal to those of the thermoelectric films without the buffer layers. When the thickness of the Cr buffer layer was 1 µm, the same as the thermoelectric films, the Seebeck coefficients of the bilayer films were reduced by an electrical current flowing inside the Cr buffer layer and the generation of Cr2Te3. The open-circuit voltage of the thin-film thermoelectric modules decreased with an increase in the thickness of the Cr buffer layer, which was primarily induced by the electrical current flow. The reduction caused by the Cr2Te3 generation was less than 10% of the total voltage generation of the modules without the Cr buffer layers. The voltage generation of thin-film thermoelectric modules could be controlled by the Cr buffer layer thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.