Abstract

Photon statistical properties of coherent field and thermal field are experimentally studied by means of direct photon counting using only one single-photon-counting module (SPCM) operating in Geiger mode. The second-order degree of coherence as affected by photon counting rate and selected resolution time is investigated systematically. By taking into account all the experimental factors which can influence the g(2), the second-order degree of coherence of an unknown optical field can be determined quickly and simply via single SPCM when choosing proper detecting conditions. In our experiment, when the counting rate is about 109 kc/s and the resolution time varies from 28 ns to 212 ns, the measured results can reliably reflect the different second-order degree of coherence of coherent and thermal fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.