Abstract

Three-dimensional motion analysis of the hand and wrist is common in in-vitro and in-vivo biomechanical research. However, all studies rely on post testing analysis, where anatomical joint coordinate systems (JCS) are created to generate clinically relevant data to describe wrist motion. The purpose of this study was to present a comparison of four JCS that have been previously described in literature. Five cadaveric upper limbs were passively cycled through a flexion–extension and radial-ulnar deviation motion pathways using a wrist motion simulator. During testing, clinical wrist angle was measured using a goniometer. Following testing, wrist angle was calculated using four previously described methods of generating wrist coordinate systems, to facilitate their comparison. For flexion–extension wrist motion, only subtle difference between JCSs were detected. When comparing the performance of each JCS to the measured wrist angle during flexion–extension wrist motion, the RMSE for all three analyzed axes were all within 6.6°. For radial-ulnar deviation wrist motion, again only subtle difference between JCSs were detected. When comparing the performance of each JCS to the measured wrist angle during radial-ulnar deviation wrist motion, the RMSE for all three analyzed axes were all within 7.1°. The results of this coordinate system comparison do not favor one JCS generation method over another, as all were found to be similar and the small differences that were found are likely not clinically significant. We support using any of the analyzed coordinate system generation methods; however, a practical advantage of using certain methods is that the required digitized points to form the coordinate systems are palpable on the skin’s surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.