Abstract

Pyridostigmine which causes a reversible inhibition of acetylcholinesterase (AChE), was administered continuously for 6 days to guinea-pigs, via a subcutaneously implanted osmotic pump. This produced 40–50% inhibition of red cell acetylcholinesterase (AChE). Controls were animals treated with saline via pumps, and untreated animals. The activities of the functional A12 molecular form of AChE were compared in diaphragm, extensor digitorum longus (EDL) and soleus muscles in the three animal groups at 6 days. The pumps were removed at 6 days and the A12 AChE activities were determined at various times thereafter. As the enzyme separation procedure was lengthy, drug-induced inhibition was no longer present when the enzyme activity was measured. At 6 days, the activity was significantly higher in EDL (over 50% higher) and soleus (over two-fold higher) in pyridostigmine-treated animals than saline-treated animals. In the diaphragm, the activities in pyridostigmine and saline-treated animals were similar but both were significantly (over two-fold) higher than in untreated animals. At 1 day after pump removal (day 7) the activity had declined in all three muscles of the pyridostigmine-treated animals and in the diaphragm of saline-treated animals. Thereafter, in the diaphragm (but not the EDL or soleus) in pyridostigmine-treated animals, there were marked variations in the enzyme activity up to day 20. In saline-treated animals there was a marked transient increase in activity at day 13 in all muscles. The results indicate that the homeostatic control of functional AChE had been affected in both the pyridostigmine and saline treatment groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call