Abstract

In rats, acetylcholinesterase (AChE) activity in the fast muscles is several times higher than in the slow soleus muscle. The hypothesis that specific neural impulse patterns in fast or slow muscles are responsible for different AChE activities was tested by altering the neural activation pattern in the fast extensor digitorum longus (EDL) muscle by chronic low-frequency stimulation of its nerve. In addition, the soleus muscle was examined after hind limb immobilization, which changed its neural activation pattern from tonic to phasic. Myosin heavy-chain (MHC) isoforms were analyzed by gel electrophoresis. Activity of the molecular forms of AChE was determined by velocity sedimentation. Low-frequency stimulation of the rat EDL for 35 days shifted the profile of MHC II isoforms toward a slower MHCIIa isoform. Activity of the globular G1 and G4 molecular forms of AChE decreased by a factor of 4 and 10, respectively, and became comparable with those in the soleus muscle. After hind limb immobilization, the fast MHCIId isoform, which is not normally present, appeared in the soleus muscle. Activity of the globular G1 form of AChE increased approximately three times and approached the levels in the fast EDL muscle. In the rabbit, on the contrary to the rat, activity of the globular forms of AChE in a fast muscle increased after low-frequency stimulation. The results demonstrate that specific neural activation patterns regulate AChE activity in muscles. Great differences, however, exist among different mammalian species in regard to muscle AChE regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call