Abstract
The aim of this study was to determine if different carbohydrates influence the growth of Listeria monocytogenes in the presence of carnocyclin A or leucocin A. Carnobacterium maltaromaticum ATCC PTA-5313 and Leuconostoc gelidum UAL187 were used to produce carnocyclin A and leucocin A, respectively. Growth curves were modeled for five strains of L. monocytogenes grown in basal medium supplemented with glucose, sucrose, fructose, mannose, or cellobiose, in the presence of carnocyclin A or leucocin A. The growth of L. monocytogenes to leucocin A or carnocyclin A was influenced by carbohydrate and/or strain. Carnocyclin A inhibited the growth of L. monocytogenes more than leucocin A. Growth in media containing glucose, mannose, and fructose increased the sensitivity of some strains of L. monocytogenes to bacteriocins, while growth in cellobiose and sucrose increased the resistance of L. monocytogenes to bacteriocins, as evidenced by a shorter lag phase. Strains of L. monocytogenes developed resistance to both leucocin A and carnocyclin A, but the time to develop resistance was longer when strains are treated with carnocyclin A. Carbohydrate influences the development of resistance of L. monocytogenes to the bacteriocins, but the ability of strains to develop resistance to leucocin A or carnocyclin A differs. Results of this study indicate that carbohydrates influence the ability of L. monocytogenes to grow in the presence of bacteriocins.
Highlights
Listeria monocytogenes is a foodborne pathogen that causes infections with a fatality rate of 20–30% (Farber and Peterkin, 1991; Thomas et al, 2013)
The objective of this research was to determine the effect of different carbohydrates on the growth kinetics of L. monocytogenes strains associated with food borne illness in the presence of two bacteriocins that differ in class and mode of action, leucocin A and carnocyclin A
L. monocytogenes FSL N1-227 grown in fructose with carnocyclin A and FSL J1-177 grown in glucose with carnocyclin A gave a growth curve that did not precisely fit the sigmoidal shape of the logistic model (Supplementary Figures S1, S4), but the R2 was > 0.99
Summary
Listeria monocytogenes is a foodborne pathogen that causes infections with a fatality rate of 20–30% (Farber and Peterkin, 1991; Thomas et al, 2013). According to the Centers for Disease Control and Prevention, the case frequency of listeriosis remained unchanged over the past 3 years (Centre for Disease Control, 2014) even though strict guidelines have been developed to control L. monocytogenes in RTE products (FSIS, 2014). With consumer demands for the food industry to increase availability of fresh, RTE and minimally processed products, novel methods of bio-preservation, such as bacteriocins, are needed. Bacteriocins and Carbohydrates of foodborne pathogens and are an attractive alternative to traditional preservatives to improve food safety (Perez et al, 2014). L. monocytogenes can develop resistance to class IIa bacteriocins (Ramnath et al, 2000; Gravesen et al, 2002; Vadyvaloo et al, 2002, 2004a; Kaur et al, 2011), but little is known about resistance to circular bacteriocins
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have