Abstract

Peptide based hydrogels gained a vast interest in the tissue engineering studies thanks to great superiorities such as biocompatibility, supramolecular organization without any need of additional crosslinker, injectability and tunable nature. Fmoc-diphenylalanine (FmocFF) is one of the earliest and widely used example of these small molecule gelators that have been utilized in biomedical studies. However, Fmoc-peptides are not feasible for long term use due to low stability and weak mechanical properties at neutral pH. In this study, Fmoc-FF dipeptides were mechanically enhanced by incorporation of alginate, a biocompatible and absorbable polysaccharide. The binary hydrogel is obtained via molecular self-assembly of FmocFF dipeptide in alginate solution followed by ionic crosslinking of alginate moieties with varying concentrations of calcium chloride. Hydrogel characterization was evaluated in terms of morphology, viscoelastic moduli and diffusional phenomena and the structures were tested as 3D scaffolds for bovine chondrocytes. In vitro evaluation of scaffolds lasted up to 14days and cell viability, sulphated glycosaminoglycan (sGAG) levels, collagen type II synthesis were determined. Our results showed that alginate incorporation into FmocFF hydrogels leads to better mechanical properties and higher stability with good biocompatibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.