Abstract

This review focuses on the role of metalloproteinases in the pathogenesis of myocardial injury in various disease entities. It reveals how the expression and serum levels of metalloproteinases and their inhibitors change in many disease states. At the same time, the study offers a review of the impact of immunosuppressive treatment on this relationship. Modern immunosuppressive treatment is based mainly on the use of calcineurin inhibitors, including cyclosporine A and tacrolimus. The use of these drugs may carry a number of side effects, specifically to the cardiovascular system. The scale and degree of long-term influence on the organism remains unclear, but a significant risk of complications for transplant recipients who take immunosuppressive drugs as part of their daily treatment is to be expected. Therefore, the knowledge on this subject should be expanded and the negative effects of post-transplant therapy minimized. Immunosuppressive therapy plays an important role in the expression and activation of tissue metalloproteinases and their specific inhibitors, which leads to many tissue changes. The presented study is a collection of research results on the effects of calcineurin inhibitors on the heart, with particular emphasis placed on the participation of MMP-2 and MMP-9. It is also an analysis of the effects of specific heart diseases on myocardial remodeling through inductive or inhibitory effects on matrix metalloproteinases and their inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.