Abstract

Three-channel Lissajous trajectories (3-CLTs) of binaural interaction components (BI) of auditory brainstem potentials (ABEPs) were derived from 13 normally hearing adults by subtracting the response to binaural clicks from the algebraic sum of monaurally evoked responses to clicks. ABEPs were recorded in response to 65 dB nHL, alternating-polarity clicks, presented at a rate of 11/s. The procedure was repeated with clicks alone as well as with clicks with broad-band masking noise. Noise was presented at 25 and 45 dB nHL, producing a signal-to-noise ratio of +40 and +20 dB, respectively. All BI 3-CLTs included 6 planar segments (labeled BdI, BdII, BdIII, BeI, BeII and Bf) whose apex latencies, except Bf, increased with increasing noise level above 25 dB nHL, and whose durations, sizes, shapes and orientations did not change across noise levels. There were also significant increases in peak latencies of the BI from single channels vertex-mastoid and vertex-neck with increasing noise level. No significant change was found in the trajectory amplitude of apices, with the exception of apices BdIII and Bf whose amplitudes increased with increasing noise level. We suggest that the paradoxical increase in BI amplitude with masking noise may reflect a binaural enhancement of the effect of noise. The effects observed indicate that, whereas the response to clicks displays occlusion, the response to noise displays spatial facilitation at the brainstem level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.