Abstract
The purpose of this study was to compare the effects of monaural and binaural broadband masking noise on binaural interaction components (BICs) of the human auditory brain stem evoked potentials (ABEPs). The BICs of the human ABEPs were studied by subtracting the potentials to binaural clicks from the algebraic sum of monaurally evoked potentials to clicks alone or to clicks with ipsilateral monaural or binaural broadband masking noise. Alternating polarity, 11/sec clicks were presented at 65 dB nHL, and noise was presented at 45 dB nHL. Analysis included peak-to-prestimulus baseline amplitudes and latencies of BICs' peaks and troughs from the vertex-mastoid (A) and vertex-neck (Z) channels. In addition, 3-channel Lissajous' trajectory (3-CLT) analysis, estimating the single, centrally located dipole equivalent of surface activity, was performed on data recorded from three orthogonally positioned electrode pairs. 3-CLT measures included apex latency, amplitude, and orientation, as well as planar segment duration, size, shape, and orientation. All BICs 3-CLTs included five main components (labeled BdI, BdII, BdIII, BeI, and BeII). In general, apex latencies were longer with masking noise. However, BdII and BeI apex latencies were shorter with binaural than with ipsilateral monaural masking noise. Apex amplitude and planar segment size of component BeI, as well as P1 peak amplitude in BICs of the Z-channel records, were larger with binaural than with monaural noise. No significant difference between the monaural and binaural noise conditions was found in durations, shapes, and orientations of planar segments of BICs 3-CLT, nor in peak latency of BICs in the A- and Z-channel records. We suggest that these effects on the latency and amplitude of BICs reflect binaural processing in the human brain stem. In particular, the larger amplitudes and shorter latencies of P1 and BeI with binaural than with ipsilateral monaural masking may be associated with the psychophysical effect of binaural masking level difference.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.