Abstract

The purpose of this study was to determine the contribution of click frequency bands (broad-band, >2000 Hz, <2000 Hz and <1000 Hz) to binaural interaction components (BICs) of the human auditory brainstem evoked potentials (ABEPs). The human BICs were studied by subtracting the potentials to binaural clicks from the algebraic sum of monaurally evoked potentials to either ear. Effective frequency bands were derived using clicks alone or clicks with ipsilateral or binaural masking noise, high- or low-pass filtered at different cut-off frequencies. Analysis included single-channel vertex-cervical spinous process VII derivation of BIC and ABEP, as well as estimating the single, centrally located dipole equivalent of the surface activity from three orthogonally positioned electrode pairs, using the three-channel Lissajous' trajectory (3-CLT) analysis. All BIC 3-CLTs included three major components (labeled BdII, BeI, and BeII) approximately corresponding in latency to IIIn, V and VI ABEP peaks. All apex latencies of BIC 3-CLT, except BeI, were longer in response to <2000 Hz and <1000 Hz (low-frequency) effective clicks. Apex amplitude of components BeI and BeII of BIC 3-CLT were smaller with low-frequency effective clicks than with broad-band or high-frequency (>2000 Hz) clicks. We suggest that binaural interaction component BeI is mainly tuned to high frequencies, showing no frequency effect on latency, and decreasing in amplitude with decreasing click high frequency content. In contrast, BdII and BeII of the human BICs are evoked more synchronously by high-frequency binaural inputs, but are also sensitive to low frequencies, increasing in latency according to the cochleotopic activation pattern. These differences between BIC components may reflect their roles in sound localization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.