Abstract

Isothermal oxidation tests have been carried out on a thermal barrier coating (TBC) system consisting of a nickel-based superalloy, CoNiCrAlY bond coat applied by HVOF and yttria-stabilised zirconia (YSZ) top coat applied by EB-PVD. Bond coat microstructure, coating cracking and failure were characterised using high resolution scanning electron microscopy complemented with compositional analyses using energy dispersive X-ray spectrometry. A protective alumina layer formed during the deposition of the YSZ top coat and this grew with sub-parabolic kinetics during subsequent isothermal oxidation at temperatures in the range 950 to 1150°C. After short exposures at 1050°C and final cooling, small sub-critical cracks were found to exist within the YSZ but adjacent to bond coat protuberances. Their formation is related to the development of local tensile strains associated with the growth of an alumina layer (TGO) on the non-planar bond coat surface. However, for the specimens examined, these cracks did not propagate, in contrast to other TBC systems, and final spallation was always found to have occurred at the bond coat/TGO interface. This shows that the strain energy within the TGO layer made a significant contribution to the delamination process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.