Abstract

The present study aims to investigate non-stoichiometric Al1.4Co2.1Cr0.7Ni2.45Si0.2Ti0.14 high entropy alloy (HEA) as a bond coat material for the TBC (Thermal Barrier Coating) system. The mechanical activated synthesized HEA was sprayed on a Ni-based superalloy substrate by High-velocity oxy-fuel (HVOF) spraying, and 8 mol% Yttria Stabilized Zirconia (YSZ) was deposited on HEA by Air Plasma Spray (APS). X-Ray Diffraction (XRD) analysis and Scanning Electron Microscopy (SEM) were used to investigate the phases and microstructure of the as-synthesized HEA powder, Ni superalloy/HEA-bond coat, and Ni superalloy/HEA-bond coat/YSZ topcoat. The mechanical properties of the coating like microhardness, Young’s modulus and residual stress between bond coat and YSZ top coat was evaluated using the Nano-Hardness Tester (NHT). The TBC system was investigated for cyclic oxidation at 1050 ℃ for 100 cycles, and its cross-sections were analyzed for TGO (Thermally grown oxides) layer composition, thickness and interdiffusion of elements. The properties of the TBC system containing HEA as a bond coat were compared with those of the conventional TBC system comprising of MCrAlY (AMDRY 365–4) as a bond coat. It was observed that HEA containing TBC displayed exceptional high temperature properties and were comparable to MCrAlY.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.