Abstract
Gammacerane is one of the major biomarkers widely used in depositional environment diagnosis, oil family classification, and oil-source correlation. It is generally accepted that gammacerane is more resistant to biodegradation than regular hopanes. However, whether it is biodegradable as well has not been reported in literatures. In order to investigate the effect of biodegradation on gammacerane in crude oils, 69 core samples from two biodegraded petroleum accumulations were geochemically characterized by quantitative GC-MS analysis. All samples are originated from lacustrine source rocks in China and have experienced at least level 8 degree of biodegradation on the scale of Peters and Moldowan (The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments, Prentice Hall, Englewood Cliffs, 1993). Both case histories showed the concentration of gammacerane decrease with increasing severity of biodegradation, indicating the destruction of gammacerane by biodegradation. A whole series of 25-norhopanes paralleling the 17α,21β-hopanes (up to C34), together with C28 18-α-25,30-bisnorneohopane, C29 25-nordiahopane and C29 25-norgammacerane, is found in the Liaohe sample suite but C33, C34 25-norhopane and 25-norgammacerane are almost undetectable in the Junggar case. The gammacerane in the Liaohe case study appear to be altered simultaneously with hopanes, although the rate of gammacerane alteration is slower. Its susceptibility to biodegradation is similar to 18α(H)-22,29,30-trisnorneohopane (Ts) and 17α(H)-22,29,30-trisnorhopane (Tm) but more vulnerable than 18α-30-norneohopane (C29 Ts), 15α-methyl-17α(H)-27-norhopane (C30 diahopane) and pregnanes. The gammacerane in the Junggar oils appear to be less biodegradable than the Liaohe case history. It was altered simultaneously with pregnanes and C29 Ts but faster than C30 diahopane. The present data suggest that biodegradation sequence is not universal since the relative rates of biodegradation of different compound classes depend upon specific environmental conditions. Like the case of hopane demethylation, the mechanism of gammacerane biodegradation is not straightforward. While the conversion of gammacerane to 25-norgammacerane is not quantitatively balanced in the Liaohe case history, no 25-norgammacerane has been formed from the degradation of gammacerane in the Junggar case history. The ratio of gammacerane to regular hopanes increases with biodegradation degree especially at extreme levels of degradation, gammacerane index is no longer valid for depositional environment assessment or oil-source correlation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.