Abstract

It has been demonstrated in numerous studies that bee pollen supplementation shows numerous positive effects on health. However, its impact on bones is largely unknown. The purpose of this study was to investigate the effect of bee pollen supplementation on the tibia biomechanical properties and bone morphometric measures using Japanese quail as an animal model. The experiment was arranged in a 2x2x2 factorial design, with sex, quail line (meat-type or egg-lying type), and bee pollen inclusion (0 or 10 g/kg of feed) as factors. The quails were one-day-old at the beginning of the experiment, they were euthanized after 42 days. Our study showed for the first time unfavorable effects of bee pollen on bones properties. Bee pollen supplementation negatively affected bone structure, irrespective of quails’ sex or line type. Bone length (P < 0.001), weight (P < 0.01), and mean relative wall thickness (P < 0.01) and mineralization (P < 0.05) were reduced by bee pollen treatment. For female quails, irrespective of line type, the decrease of yield load (P < 0.001), ultimate load (P < 0.01), yield stress (P < 0.001) and ultimate stress (P < 0.05) was noted. Analysis of growth plate in bone metaphysis showed that bee pollen supplementation slowed the process of bone maturation irrespective of sex (P < 0.05). On contrary, dietary bee pollen positively affected bone homeostasis of trabecular bone in bone metaphysis as bone mineral density increased in experimental groups (P < 0.05). In males, this was the result of the increase of trabecular thickness (P < 0.01), in females due to the reduction of trabecular space (P < 0.001). In conclusion, our results demonstrate that bee pollen (1.0%, 10 g/kg of feed) supplementation caused significant negative effects on the mechanical endurance of the tibia of quails, while showed beneficial effects on trabecular bone histomorphometry.

Highlights

  • Bee pollen is a mixture of flower pollen agglutinated by nectar and honeybee salivary enzymes

  • Bee pollen supplementation resulted in reduction of bone mass (P < 0.01), length (P < 0.001) the Seedor index (P < 0.01), and mean relative wall thickness (MRWT) of bone diaphysis (P < 0.01)

  • No study has been published that shows the effects of dietary bee pollen supplementation on bone properties in a such detailed manner in in vivo studies

Read more

Summary

Introduction

Bee pollen is a mixture of flower pollen agglutinated by nectar and honeybee salivary enzymes. The major components of bee pollen are proteins, essential amino acids, reducing sugars, lipids, nucleic acids, minerals, vitamins, as well as enzymes and co-enzymes necessary for good digestion [1]. This natural product is considered a health food, as it exhibit a wide range of therapeutic properties, including: antioxidant, antimicrobial, antifungal, hepatoprotective, and anti-inflammatory activities; for detailed review see [2]. The very recent review lists numerous positive effects of bee pollen supplementation on poultry, showing that dietary bee pollen inclusion may exert positive immunomodulatory effects, antioxidants effects, anti-inflammatory effects, improve blood profile and biochemistry, improve cardiac, liver and kidney functions [3]. There are some in vitro studies suggesting that bee pollen has a stimulatory effect on bone formation and an inhibitory effect on bone resorption [4,5,6], its impact on biomechanical properties and bone microstructure in in vivo studies has been analyzed to a limited extent [7, 8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call