Abstract
High energy ball-milling methods were employed in the synthesis of anatase-doped hematite xTiO2(a) · (1−x)α-Fe2O3 (x = 0.1, 0.5, and 0.9) ceramic system. The thermal behavior of as obtained ceramic system was characterized by simultaneous DSC–TG. The pure anatase phase was found to be stable below 800 °C, but there is a 10.36% mass loss due to the water content. Two exothermic peaks on DSC curves of pure anatase indicate the different crystallization rates. The pure hematite partially decomposed upon heating under argon atmosphere. Ball-milling has a strong effect on the thermal behaviors of both anatase and hematite phases. For x = 0.1 and 0.5, there is gradual Ti substitution of Fe in hematite lattice, and the decomposition of hematite is enhanced due to the smaller particle size after ball-milling. The crystallization of hematite was suppressed as the enthalpy values decreased due to the anatase-hematite solid–solid interaction. For x = 0.9, most of the anatase phase converted to rutile phase after long milling time. The thermal behavior of xTiO2(a) · (1−x)α-Fe2O3 showed smaller enthalpy value of the hematite transformation to magnetite and anatase crystallization due to the small fraction of hematite phase in the system and hematite–anatase interaction, while the mass loss upon heating increased as a function of milling time due to more water content absorbed by the smaller particle size.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.