Abstract

The performance of two computerized algorithms for the detection of muscle onset and offset was compared. The standard deviation (SD) method, a commonly used algorithm, and the approximated generalized likelihood ratio (AGLR) method, a more recently developed algorithm, were evaluated at different levels of background surface EMG (sEMG) activity. For this purpose, the amplitude ratio between the period of muscle inactivity and activity was varied from 0.125 to 1 in artificially assembled sEMG traces. In addition, 1230 real sEMG signals, obtained from various trunk muscles during quick release, were raised to a power of 3 to change their relative amplitude ratio. As the relative level of background activity increased, both the SD and AGLR methods produced longer latencies and detected fewer muscle responses, suggesting that a detection artifact can be introduced if the subject populations being compared have different levels of background muscle activity. Of the two methods, AGLR appears to be the least affected by background activity. However, above the ratio 0.8, results from AGLR are also unreliable, particularly in detecting offsets. Average latency artifacts near this ratio were 8 ms for AGLR and 46 ms for SD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.