Abstract
The purpose of this study was to investigate the effect of atmospheric pressure plasma application on the water contact angle (CA) of zirconia ceramics. Two zirconia ceramics (Katana, Kuraray Noritake Dental and Lava, 3 M ESPE) were used to test the plasma treatment (SAP, surface) with argon gas for one minute (1 L/min). To measure the CA, a drop of water was placed on a zirconia surface, which was observed under optical microscopy, and images were used to calculate the CA (n = 5). The dynamic behavior of the surface wettability was analyzed by collecting the CA data over a 70-hour period. CA data were analyzed by two-way ANOVA and the Tukey test (5%). The CA baseline values were 66° and 68° for Katana and Lava, respectively. After the application of plasma, the CA was reduced significantly to 36° and 31°, respectively. The CAs for Lava zirconia and Katana returned to baseline values after 5 and 15 hours, respectively. The plasma treatment improved the wettability of the zirconia surface, decreasing the CA approximately 50%. The duration of the effect of plasma on zirconia surfaces was at least 5 hours and material-dependent.
Highlights
Zirconia has been used for over 40 years for industrial purposes and for about 20 years in dentistry
Two-way analysis of variance (ANOVA) indicated that the application of plasma and the type of zirconia ceramic, as well as their interaction, significantly influenced the contact angle results (p < 0.01)
The contact angle was significantly lower when the zirconia surface was treated with plasma (p < 0.05)
Summary
Zirconia has been used for over 40 years for industrial purposes and for about 20 years in dentistry. Its composition is basically zirconium dioxide (approximately 95%), and it is stabilized with yttrium and enriched with alumina to prevent the leaching of the yttrium oxide. This composition ensures the longevity of zirconia restorations, and the sintering process at 1200–1500°C provides high flexural strength and hardness. Another advantage of using zirconia is its translucency properties that allow light to pass partially through the material, resulting in good esthetic effects [1,2,3]. Treatment of the surface and the use of adhesive primers have been suggested as methods to overcome the poor adhesion [4,5,6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.