Abstract

The application of Co–Pt thin films as functional elements of novel nanoelectronics and spintronics devices requires the formation of a homogeneous ferromagnetic CoPt phase with tunable magnetic properties. A diffusion-controlled synthesis of this ferromagnetic phase can be implemented through the annealing of deposited Co/Pt bilayers. Apart from thermal treatment, both structural and magnetic properties of such layered stacks can be affected by ion preirradiation. In this work, we, therefore, studied the effect of a two-stage process consisting of preirradiation with 110 keV Ar+/N+ ions followed by post-annealing in vacuum at 550°С for 30 min on the evolution of the structural, chemical, and magnetic properties of Co/Pt/substrate and Pt/Co/substrate heterostructures. The results obtained for such two-stage processing were compared to those received after single-stage vacuum annealing. It was found that when ion preirradiation is followed by annealing, the diffusion-driven intermixing of Pt and Co leading to the formation of the ferromagnetic Co–Pt phase is slowed down compared to the non-irradiated samples, which is associated with the barrier effect of implanted projectiles. Furthermore, we demonstrate that preirradiation does not compromise the magnetic properties of the samples. For instance, preirradiation leads to a coercivity increase of up to 38 % compared to the non-irradiated annealed samples which is attributed to the presence of remaining paramagnetic Pt between the grains of the ferromagnetic A1-CoPt phase. We demonstrate that the applied two-stage processing (consisting of ion preirradiation followed by thermal annealing) of magnetic thin films is a promising approach for tailoring their magnetic properties such as the in-plane coercivity, saturation, and effective magnetization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.