Abstract

In this work, we investigate the impact of annotation quality and domain expertise on the performance of Convolutional Neural Networks (CNNs) for semantic segmentation of wear on titanium nitride (TiN) and titanium carbonitride (TiCN) coated end mills. Using an innovative measurement system and customized CNN architecture, we found that domain expertise significantly affects model performance. Annotator 1 achieved maximum mIoU scores of 0.8153 for abnormal wear and 0.7120 for normal wear on TiN datasets, whereas Annotator 3 with the lowest expertise achieved significantly lower scores. Sensitivity to annotation inconsistencies and model hyperparameters were examined, revealing that models for TiCN datasets showed a higher coefficient of variation (CV) of 16.32% compared to 8.6% for TiN due to the subtle wear characteristics, highlighting the need for optimized annotation policies and high-quality images to improve wear segmentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.