Abstract
Changing trends in the use of anxiolytic agents and recent reassessment of their neuropharmacological activity has prompted this evaluation of the peripheral neuromuscular activity of the benzodiazepine, flurazepam. In previous reports we have documented peripheral neuromuscular activity of chlordiazepoxide and diazepam on the rat phrenic nerve diaphragm preparation. The water soluble benzodiazepine, flurazepam, has been studied on the rat phrenic nerve diaphragm and frog rectus abdominis in vitro. On the former preparation flurazepam enhanced and then blocked the response to indirect electrical stimulation (0.2 Hz) and readily blocked posttetanic potentiation and prevented the preparation from sustaining a tetanic contracture (30 Hz). On the later preparation, flurazepam blocked in a noncompetitive manner the response of the frog muscle to applied cholinergic agonists. Studies on the rat preparation with the neuromuscular blocking drug succinylcholine have shown an unexpected protection against blockade in preparations pretreated with low concentrations of flurazepam. This was not observed when flurazepam was given prior to d-tubocurarine. The application of adenosine to rat diaphragms during steady-state partial blockade caused by flurazepam or d-tubocurarine showed an inhibiting action of adenosine which was reversed by theophylline. Pretreatment of rat preparations with dipyridamole significantly enhanced the blocking action of standard concentrations of succinylcholine. These results, along with those in the literature, encourage a reassessment of the action of purines and benzodiazepines on skeletal muscle and encourage a consideration of a possible involvement of purinergic neuromodulation of transmission which is unmasked when the safety factor for transmission is altered by muscle relaxants. The possible clinical significance of protection against succinylcholine by benzodiazepines is noted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.