Abstract

Edge-notched clamped beam bend fracture specimens provide the required geometric stability for controlled crack growth in brittle materials, enabling the measurement of R-curves and cyclic crack growth. In this paper, finite element simulations were carried out on this test geometry to extract the normalized stress intensity factor KI solutions for different useful specimen dimensions, loading tip radius and loads. Based on these results, geometric factors have been proposed that can fit various beam aspect and crack depth ratios. Crack stability analysis is carried out in terms of the R locus for various beam aspect ratios for the clamped beam geometry and compared to other fracture toughness tests. Experimental verification of the same has been carried out at the macro-scale using poly-methyl methacrylate (PMMA) and WC-Co as model materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call