Abstract

Visco-energetic solutions have been recently advanced as a new solution concept for rate-independent systems, alternative to energetic solutions/quasistatic evolutions and balanced viscosity solutions. In the spirit of this novel concept, we revisit the analysis of the variational model proposed by Francfort and Marigo for the quasi-static crack growth in brittle materials, in the case of antiplane shear. In this context, visco-energetic solutions can be constructed by perturbing the time incremental scheme for quasistatic evolutions by means of a viscous correction inspired by the term introduced by Almgren, Taylor, and Wang in the study of mean curvature flows. With our main result we prove the existence of a visco-energetic solution with a given initial crack. We also show that, if the cracks have a finite number of tips evolving smoothly on a given time interval, visco-energetic solutions comply with Griffith's criterion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.