Abstract

In 1897 Rayleigh(14) pointed out that it is possible to obtain a family of solutions to certain problems in diffraction theory, notably those involving plane obstacles, by the simple operation of differentiation of some one solution. This, of course, alters the nature of the solution, especially so in the neighbourhood of a sharp edge. For, at an edge the parent solution may be finite and yet its derivative can become infinite. Further, such a differentiated solution may produce an infinite total energy in the neighbourhood of the edge. It is, therefore, natural to ask what conditions are required to make the solutions of these problems physically and mathematically acceptable and thus define the boundary-value problem uniquely.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.